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ABSTRACT  

Since the roll damping of ships has significant effects of viscosity, it is difficult to calculate it 
theoretically. Therefore experimental results or some prediction methods are used to get the roll 
damping in design stage of ships. Among some prediction methods, Ikeda’s one is widely used in 
many ship motion computer programs. 

Using the method, the roll damping of various ship hulls with various bilge keels are calculated 
to investigate its characteristics. Ship hull forms are systematically changed by changing length, 
beam, draft, midship sectional coefficient and prismatic coefficient. 

On the basis of these predicted roll damping of various ships, a very simple prediction formula 
of the roll damping of ships is deduced. It is found, however, that this formula cannot be used for 
ships that have high position of the center of gravity. A modified method to improve accuracy for 
such ships is proposed. 
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1. INTRODUCTION 

In 1970’s, strip methods for predicting ship 
motions in 5-degree of freedoms in waves have 
been established. The methods are based on 
potential flow theories (Ursell-Tasai method, 
source distribution method and etc), and can 
predict pitch, heave, sway and yaw motions of 
ships in waves in fairly good accuracy. In roll 
motion, however, the strip methods do not 
work well because of significant viscous 
effects on the roll damping. Therefore, some 
empirical formulas or experimental data are 
used to predict the roll damping in the strip 
methods. 

To improve the prediction of roll motions 
by these strip methods, one of the authors 
carried out a research project to develop a roll 
damping prediction method which has the same 
concept and the same order of accuracy as the 
strip methods which are based on 
hydrodynamic forces acting on strips, or cross 

sections of a ship [Ikeda et al. (1976), Ikeda et 
al. (1977a), Ikeda et al. (1977b), Ikeda et al. 
(1978): All papers in English versions were 
published as Reports of Dept. of Naval 
Architecture, Univ. of Osaka Pref.]. The review 
of the prediction method was made by Himeno 
(1981) and Ikeda (1982) with the computer 
program.  

The prediction method, which is now called 
Ikeda’s method, divides the roll damping into 
the frictional (BF), the wave (BW), the eddy (BE) 
and the bilge keel (BBK) components at zero 
forward speed, and at forward speed, the lift 
(BL) is added. Increases of wave and friction 
components due to advance speed are also 
corrected on the basis of experimental results. 
Then the roll damping coefficient B44 (=Roll 
damping moment (kgfm) / Roll angular 
velocity (rad/sec) ) can be expressed as follows. 

 BKLEWF BBBBBB += + + + (1)44
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At zero forward speed, each component 
except the friction component is predicted for 
each cross section with unit length and the 
predicted values are summed up along the ship 
length. The friction component is predicted by 
Kato’s formula for a three-dimensional ship 
shape. Modification functions for predicting 
the forward speed effects on the roll damping 
components are developed for the friction, 
wave and eddy components. The computer 
program of the method was published, and the 
method has been widely used. 
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For these thirty years, the original Ikeda’s 
method developed for conventional cargo ships 
has been improved to apply many kinds of 
ships, for examples, more slender and round 
ships, fishing boats, barges, ships with skegs 
and so on. The original method is also widely 
used. However, sometimes, different 
conclusions of roll motions were derived even 
though the same Ikeda’s method was used in 
the calculations. Then, to check the accuracy of 
the computer programs of the same Ikeda’s 
method, a more simple prediction method with 
the almost same accuracy as the Ikeda’s 
original one has been expected to be developed. 
It is said that in design stages of ships, Ikeda’s 
method is too complicated to use. To meet 
these needs, a simple roll damping prediction 
method was deduced by using regression 
analysis [Kawahara et al. (2008)]. 

2. PREVIOUS PREDICTION FORMULA 

The simple prediction formula proposed in 
previous paper cannot be used for modern 
ships that have high position of center of 
gravity or long natural roll period such as large 
passenger ships with relatively flat hull shape. 
In order to investigate its limitation, the authors 
compared with the result of this prediction 
method and original Ikeda’s one out of its 
calculating limitation. Figure 1 shows the result 
of the comparison with their method of roll 
damping. The upper one is on the condition 
that the center of gravity is low and the lower 
one on the condition that the center of gravity 
is high. 

(a) OG/d = -0.2 
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(b) OG/d = -1.5 
Figure 1   Comparison between Ikeda’s method 
and proposed one of roll damping at L/B=6.0 
B/d=4.0, Cb=0.65, Cm=0.98, φa=10°, 
bBK/B=0.025 and lBK/Lpp=0.2. (OG denotes the 
distance between water surface and center of 
gravity, and defined plus when the center of 
gravity is below water surface.) 

From this figure, the roll damping estimated 
by this prediction formula are in good 
agreement with the roll damping calculated by 
the Ikeda’s method for low position of center 
of gravity, but the error margin grows for the 
high position of center of gravity. The results 
suggest that the previous prediction formula is 
necessary to be revised. 

3. METHODICAL SERIES SHIPS 

Modified prediction formula will be 
developed on the basis of the predicted results 
by Ikeda’s method using the methodical series 
ships. This series ships are constructed based 
on the Taylor Standard Series and its hull 
shapes are methodically changed by changing 
length, beam, draft, midship sectional 
coefficient and longitudinal prismatic 
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coefficient. The geometries of the series ships 
are given by the following equations. 

(2)

(3)
where 

(4)

(5)

(6)

(7)

(8)

(9)

(at stern side and CP<0.73)

(10)
(at stern side and CP ≥0.73)

 (11)

(at bow side and CP <0.72)

(12)
(at bow side and CP ≥0.72)

(13)
(at stern side and CP <0.74)

(14)
(at stern side and CP ≥0.74)

 (15)

(at bow side and CP <0.73)

(16)
(at bow side and CP ≥0.73)

where  

y1 is the non-dimensional value obtained by 
 sectional-immersed-area divided by maximum-
 immersed-area, 

y2 is the non-dimensional value obtained by 
 sectional-water-line-breadth divided by 
 maximum-water-line-breadth, 

x is the non-dimensional value of longitudinal 
 position when x is measured from the extremity 
 of either the bow or stern, 

CP is the longitudinal prismatic coefficient, 

CW is the water-plane coefficient, 

f11 is constant and equal to 0.6 for the stern and 1.0 
 for the bow, 

f12 is constant and equal to 0.05, 

f21 is constant and equal to 2.0 for the stern and 1.0 
 for the bow,  

f22 is constant and equal to 0.15 for the stern and 0.1 
 for the bow. 

However, occasionally, corrections of the 
results obtained from the Eqs.2, 3 are required. 
For example, if maximum of y1 exceeds 1.0, it 
is adjusted to 1.0. 

Figures 2 and 3 show the sectional area 
curves obtained from Eq.2 and a body plan of a 
ship with Cb=0.84 (Cb : block coefficient) and 
Cm=0.98 (Cm : midship section coefficient), 
respectively. Since the hull shapes used here 
are conventional ones as shown in Figure 3, an 
application of the deduced prediction method 
to modern unconventional hull shapes, for 
example buttock-flow hull, should be careful. 
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Figure 2   Sectional-area curves of series model 
used in calculation. 
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Figure 3   An example of body plan of ship 
with Cb=0.84 and Cm=0.98. 
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the wave, the eddy and the bilge keel 
components at zero advanced speed, are 
discussed, and a simple prediction formula of 
each component is developed. 

The roll damping coefficient (B44) and 
circular frequency (ω=2π/Tw) are defined as 
follows, 

 (17)

 (18)

where ρ denotes water density, ∇  
displacement volume, B  beam and g is gravity 
acceleration, respectively. 

The relationship between B44 and N 
coefficient (Bertin) is as follows. 

(19)

4.1 Frictional Component (BF) 

In Ikeda’s method, the friction damping at 
Fn=0 is given by Kato’s formula as follows,  

 

a whole ship as Eqs.20-23, the formula is used 

4.2 Wave Component (BW) 

component of the 
rol

4.2.1 Characteristics of the Wave 

sig

5 and 6, calculated distributions 
of 

 
location of roll axis or center of gravity are 
shown in Figure 7. 

(20)

where cf is frictional coefficient, rf is 
average radius from the axis of rolling and sf is 
wetted surface area. These parameters in the 
equation are given by the following equations, 

 
(21)

(22)

(23)

where φa denotes roll amplitude, T roll 
period, ν  dynamic coefficient of viscosity, OG  
distance from calm water surface to the axis of 
rolling (downward direction is positive) and d 
draft, respectively. 

In the present study, since the frictional 
component of roll damping is already given for 

without any modification in the simple 
prediction method developed in the present 
study. It should be noted, however, the 
frictional component is negligible for a full-
scale ship although it takes about 5-10% of the 
total roll damping for a small scale model. 

g
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As well known, the wave 
l damping for a two-dimensional cross 

section can be calculated by potential flow 
theories in fairly good accuracy. In Ikeda’s 
method, the wave damping of a strip section is 
not calculated and the calculated values by any 
potential flow theories are used as the wave 
damping. 
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The reason why viscous effects are 
nificant in only roll damping can be 

explained as follows. Figure 4 shows the wave 
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calculated by a potential flow theory. We can 
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roll damping. 

In Figures 
the wave component of the roll damping are 

shown. The results for a full ship (Cb=0.8) 
shown in Figure 5 demonstrate that the 
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small, and that created by the stern body is 
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Figure 4   Characteristics of roll damping 
coefficient of wave component for two-
dimensional section at OG/d=0 and ω̂ =1.25. 
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Figure 5   Longitudinal distribution of σ, H0 
and roll damping coefficient of wave 
component for a ship with L/B=5, B/d=3.5, 
Cm=0.94, Cb=0.8, OG/d=0 and ω̂ =1.25. 
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Figure 6   Longitudinal distribution of σ, H0 
and roll damping coefficient of wave 
component for a ship with L/B=5, B/d=3.5, 
Cm=0.94, Cb=0.5, OG/d=0 and ω̂ =1.25.  
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Figure 7   Characteristics of roll damping 
coefficient of wave component for a whole ship 
at L/B=5, B/d=3.5, Cm=0.94, Cb=0.8. 

 
4.2.2 Proposed Formula of the Wave Roll 
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By fitting these predicted wave components 
a simple prediction formula is deduced as 
follows. 
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4.3 Eddy Component (BE) 

The eddy component of the roll damping is 
created by small separation bubbles or small 
shedding vortices generated at the bilge part of 
midship section and large vortices generated at 
the relatively sharp bottom of bow and stern 
sections. Although vortex shedding flow from 
oscillating bluff bodies is usually govern by 
Keulegan-Carpenter number, Kc, it was found 
by Ikeda et al.(1978b) that the viscous forces 
created by such small separation bubbles or 
small shedding vortices do not significantly 

depend on Kc. In Ikeda’s prediction method, 
the distribution of the pressure created on a hull 
surface by such separation bubble is assumed 
as a simple shape for each shape of cross 
sections on the basis of experimental results of 
pressure distribution on hull surfaces. The 
pressure value was determined as the 
calculated eddy components of the roll 
damping for various cross sections are in good 
agreement with measured ones. Then, the eddy 
damping of a strip section is calculated by 
following formulas. 
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where, rmax is maximum distance from 
center of gravity (roll axis) to hull surface, R is 
bilge radius and σ  is sectional area coefficient. 

The eddy roll damping of a whole ship is 
calculated by integrating BE

’ to longitudinal 
direction. 

 
4.3.1 Characteristics of Eddy Component 

In Figures 8 and 9, the longitudinal 
distribution of the  predicted eddy component 
of the roll damping are shown for a slender 
ship (Cb=0.5) and a full ship (Cb=0.8). The 
eddy component of a slender ship is large at 
bow and stern parts, and has a small peak at 
mid-ship, as shown in Figure 8. For a full ship, 
however, the eddy damping at parallel middle 
body part becomes larger and longer as shown 
in Figure 9. The component at stern is large as 
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a slender ship, but becomes small at bow part. 
These may be caused by that both ships has 
similar V shape stern but the full ship has U 
shape bow section which is not thin and flat 
shape as a slender ship. 

Figure 10 shows the effect of midship-
section coefficient (Cm ) on the eddy damping.  
The results demonstrate that the eddy 
component of the roll damping of parallel body 
parts of ships is significantly sensitive to Cm.  
This is because of larger flow separation occurs 
at bilge corners of ships with large midship-
section coefficient. 
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Figure 8   Longitudinal distribution of σ, H0 
and roll damping coefficient of eddy 
component for a ship with L/B=5, B/d=3.5, 
Cm=0.94, Cb=0.5, OG/d=0 and ω̂ =1.25.  
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Figure 9   Longitudinal distribution of σ, H0 
and roll damping coefficient of eddy 
component for a ship with L/B=5, B/d=3.5, 
Cm=0.94, Cb=0.8, OG/d=0 and ω̂ =1.25. 
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Figure 10   Effects of midship-section 
coefficient, Cm on eddy component of roll 
damping for slender ships (Cb=0.5) and full 
ships (Cb=0.8). 
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(31)

4.4 Bilge Keel Component (BBK) 

The bilge keel component is usually the 
largest one in the roll damping. The component 
creates 50-80% of the total roll damping. The 
component is created by shedding vortices 
from the sharp edges of bilge keels due to roll 
motion. The component can be divided into 
two components, the normal force component 
(BN) and the hull pressure component (BS). 
Both components are created by the same 
vortices from the edge of bilge keels. The 
former one is created by the force acting a bilge 
keel, and the latter by the pressure over the hull 
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surfaces in front and back sides of the bilge 
keel. 

In Ikeda’s method, the pressure 
distributions in front and back of a bilge keel 
are assumed on the basis of the measured ones, 
and are integrated over the hull surface. This 
means that the method may be available for 
any shape of cross section. Ikeda et at. 
experimentally found that the magnitude and 
distribution of the pressure created by a bilge 
keel significantly depends on Kc. 

The roll damping due to the normal force 
acting on bilge keel is given by following 
expressions. 

(32)

 (33)

where r is distance from the axis of rolling 
to bilge keel, bBK is width of bilge keel, lBK is 
length of bilge keel and f is correction factor on 
bilge radius to take the velocity increase there 
into account. 

The roll damping due to the hull pressure 
created by bilge keels is calculated by 
following equations. 

(34)

(35)

where CP1 is pressure coefficient on hull 
surface. The positive pressure coefficient 
(CP1

+) of face of a bilge keel and the negative 
pressure coefficient (CP1

-) of back side of a 
bilge keel are given by following formulas. 

 (36)

 (37)

 
4.4.1 Characteristics of the Bilge Keel 

Component 

Calculated bilge keel component of the roll 
damping by Ikeda’s method are shown in Figs. 

11-13 to demonstrate the characteristics. In 
Figure 11 bilge keel component of the roll 
damping of slender ships (Cb=0.58) and full 
ships (Cb=0.81) with different midship-section 
coefficients are shown. In the prediction the 
area of bilge keels is systematically changed. 
The results show that the roll damping 
component increases with increasing area of 
bilge keels. For full ships the increase of the 
component is almost linear, but for slender 
ships it shows non-linearly increases. The 
magnitude of the component significantly 
depends on midship-section coefficients, but 
not so sensitive on block coefficient Cb. 
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Figure 11   Bilge keel component of roll 
damping of slender and full ships for various 
bilge keel lengths and constant breadth (bBK). 

Figure 12   Effect of location of center of 
gravity, or roll axis on bilge keel component of 
roll damping. 

Figure 13   Bilge keel component of roll 
damping of slender and full ships with bilge 
keels of the same area (SBK) but different 
lengths. 
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In Figure 12, effects of location of center of 
gravity on bilge keel component of roll 
damping are shown for slender and full ships. 
As height of center of gravity decreases, or 
OG/d increases, the bilge keel component 
decreases. This is because relative flow speed 
at bilge corner decreases and flow separation at 
the edge of bilge keels weakens. 

In Figure 13, effects of aspect ratio 
(=length/breadth of a bilge keel) on the roll 
damping of ships with the same area bilge 
keels are shown. It can be seen that the 
component is not so sensitive with aspect ratio, 
but increases with increasing aspect ratio, or 
more slender bilge keels for full ships with 
large midship-section coefficients. 

 
4.4.2 Proposed Formula of the Bilge Keel 

Roll Damping 

By fitting these predicted bilge keel 
components a simple prediction formula is 
deduced as follows. 

(38)

5. VALIDATION OF PROPOSED 
METHOD 

To verify the validity of the proposed 
method, the values of the roll damping 

calculated by the original Ikeda’s method and 
the proposed method are compared on two 
kinds of ships. The results of these 
comparisons are shown in Figure 14. 

These results indicate that the calculated 
values of roll damping by the proposed 
formulas are in good agreement with the roll 
damping calculated by the Ikeda’s method, 
although the estimated values by using the 
proposed method have some errors about 10% 
when ω̂  becomes larger for the ship with 
OG/d=-0.2 as shown in Figure 14. However, 
the error margin becomes small in the low-
frequency range because the bilge keel 
component is predominant.  
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method and proposed one of roll damping at 
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The results in Figure 14 suggest that the 
errors come from the discrepancy of the wave 
component between the proposed method and 
the potential theory. Especially, this 
discrepancy grows larger on condition of 
B/d=4.5 and OG/d=-0.2 ~ -0.5, so it should be 
noted for the use of the proposed method on 
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this condition. This may be because the wave 
component of the roll damping intricately 
depends on frequency and locations of roll axis. 
Therefore, if more accurate prediction is 
needed, the calculated wave damping by any 
potential theory should be used. 

6. LIMITATION OF IKEDA’S METHOD 

In recent years, the number of ships that 
have buttock flow stern, such as large 
passenger ship or pure car carrier, has been 
increasing. In such a type of ships, however, 
prediction accuracy of roll damping calculated 
by Ikeda’s method might decrease remarkably. 
In order to investigate its limitation, free roll 
decay tests are carried out by using three types 
of model ships, large passenger ship (LPS), 
modern pure car carrier (PCC) and wide 
breadth and shallow draft car carrier (WSPCC). 
The principal particulars of these ships and the 
body plan of large passenger ship are shown in 
Table 1 and Figure 15, respectively. As shown 
in Figure 15, the ship has shallow stern-bottom 
with something like a skeg. 

 
Table 1. Principal particulars of the ships 
 LPS PCC WSPCC
Scale 1/125 1/96 1/96 
LOA (m) 2.200 2.083 2.083 
LPP (m) 1.933 2.00 2.00 
Breadth (m) 0.287 0.336 0.378 
Draft (m) 0.067 0.0938 0.0772
Displacement(kg) 26.98 33.43 28.05 
GM (m) 0.0126 0.0194 0.063 
Tnr (sec) 1.88 2.06 1.05 
OG/d -1.13 -0.071 -1.35 
bBK/Breadth  0.0217 0.0217
lBK/LPP  0.225 0.225 

 

 
Figure 15   Body plan of large passenger ship. 

In Figure 16, the obtained results of the 
extinction coefficient N are shown. The results 
demonstrate that the accuracy of Ikeda’s 
prediction method decrease remarkably when 
the roll angle is small. However, the error of 
roll damping becomes smaller for large 
passenger ship and pure car carrier in condition 
of large roll angle. For wide breadth and 
shallow draft car carrier, however, the roll 
damping calculated by Ikeda’s prediction 
method is overestimated from the experimental 
result for whole roll angle. This is pointed out 
by Tanaka et al. (1981) that the effect of the 
bilge keel component on the roll damping 
significantly decreases for the wide breadth and 
shallow draft ships. Also, the discrepancies 
between the simple prediction formula and 
Ikeda’s method are attributed to differences 
between methodical series model and real 
model ship and to using out of its possible 
calculating condition. Then, the extinction 
coefficient N of large passenger ship is 
relatively large even for naked hull because of 
relatively small bilge radius. Thus, Ikeda’s 
prediction method is valid only in large roll 
angle for modern type of ships with buttock 
flow stern, and overestimate the roll damping 
for a very flat ship with large bilge keels. 
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(c) Wide breadth and shallow draft car carrier 

Figure 16   Comparison of roll damping 
between Ikeda’s method and experimental 
result. 

7. CONCLUSIONS 

A simple prediction method of the roll 
damping of ships is developed on the basis of 
the Ikeda’s original prediction method which 
was developed in the same concept as a strip 
method for calculating ship motions in waves. 
Using the data of a ship, B/d, Cb, Cm, OG/d, ω̂ , 
bBK/B, lBK/LPP, φa, the roll damping of a ship 
can be approximately predicted. Moreover, the 
limit of application of Ikeda's prediction 
method to modern ships that have buttock flow 
stern is demonstrated by the model experiment. 
The computer program of the method can be 
downloaded from the Home Page of Ikeda’s 
Labo. 

(http://www.marine.osakafu-
u.ac.jp/~lab15/roll_damping.html). 
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