B 227 **FEM によるプラズマ切断時の 電極割れに関する力学的検討**

松本直博 (指導教員:正岡,柴原)

1. 緒言

プラズマ切断とは、トーチ内部の電極と切断対 象物との間にアーク放電を行い、その熱を利用し、 切断する方式である.またガス切断に比べ、高速 かつ歪の少ない切断が可能であり、1mmから 30mm程度の板厚の鋼板を切断する際に良く用 いられる方法である.現在、プラズマ切断装置の 電極部には高融点材料であるハフニウム(Hf)が よく用いられるが、消耗の点で問題となっている. それに代わる新たな電極材料としてハフニウム カーバイト(HfC)について検討を進めているが割 れの発生などあり、問題となっている.

そこで,本研究では電極形状や寸法及び冷却部 形状等がHfC電極の割れに及ぼす影響について FEM熱弾塑性解析¹⁾を用いて検討を行った.

2. 解析モデル

2.1 プラズマトーチ電極形状

Fig.1 にプラズマ切断装置のトーチ内部の電極 形状を示す.解析部は図中の赤線で囲まれた部分 であり,HfC 電極部,Cuシース部,水冷部で構 成される.この電極部分にはプラズマ切断時にお いて,割れが発生する可能性がある。そこで本研 究では,時々刻々と変化する温度場と応力場を忠 実に再現するFEM熱弾塑性解析を用いて検討し た.

2.2 解析対象領域の寸法及び解析条件

解析対象領域の寸法およびその3次元形状を

Fig.3 材料定数の温度依存性

Fig.2(a)(b)に示す.プラズマトーチ電極が軸対称 形状をしているので Fig.2(a)に示される解析対 象領域の左端を対称軸とする軸対称モデルとし た.また解析で用いた拘束条件は同図に示す通り である.解析対象領域は HfC 電極部,Cu シース 部及び水冷部を模擬したものである.また水冷部 の影響については熱伝達係数を大きくすること により考慮した.入熱はアークからの熱伝導や輻 射熱を想定した表面発熱を Fig.2(a)の赤線部に 与え,HfC 電極部及び Cu シース部で発生する ジュール発熱を要素内部発熱として与えた.また 電極部とシース部に用いられる HfC,Cu の材料 定数の温度依存性を Fig.3 に示す.

3. 解析結果

3.1. 基本形状における応力分布

Fig.4 には入熱と熱の拡散,伝達がつりあう状

MARINE SYSTEM ENGINEERING /February 2006

Fig.6 冷却部の深さの影響(σ_z)

の温度分布,半径方向応力or,軸方向応力ozの分 布を示す.Fig.4(a)の温度分布から,水冷効果及 びCuシースによる冷却効果によりCu部分の温 度がHfC 電極部に比べ低くなっていることがわ かる.また,最高温度部は電極最下部中央で 3970 となっている.次に半径方向応力に関し ては, Fig.4(b) に示すように熱膨張に伴う大き な圧縮応力が現れている.さらに軸方向応力に関 してはFig.4(c) に示すようにCu-HfC界面の HfC側に高応力部が存在し、これはCuとHfCの線 膨張係数の差に起因するものであり、その値は 100.3kgf/mm²となっている.このように非現実 的に高い応力になる理由としてはHfCという特 殊金属の高温部における降伏応力の温度依存性 が不明なため、今回の解析では弾性材料と仮定し て解析を実施したためである.また,これらの図 より割れはFig.4(c)の高応力部に発生し,高応力 成分である軸方向と垂直な方向すなわち横方向 に進展すると考えられる.

以上の結果より,標準状態においては大きな軸 方向の応力が発生することが確認されたため,次 節ではこの応力成分のみについて検討する.

3.2 電極形状の違いによる影響

3.2.1 電極幅の影響

Fig.5 には電極幅の違う3つのモデルの軸方向

Fig.7 B1.0H0.50 の温度・応力分布

Fig.8 各モデルの軸方 向最大応力σ_z 力が50.2 kgf/mm²増加し, B1.0 H1.75 モデルに対 し,電極幅を2倍にした B2.0 H1.75 モデルでは 18.6 kgf/mm²増加してい る.これより電極幅が一 番小さい時,定常状態に おける軸方向最大引張り 応力σ₂が小さくなった.

3.2.2 水冷部深さの影響 Fig.6(a)(b)には標準モデル及びB2.0H1.75 モ デルに対し水冷部深さを2倍にしたモデルの定

常状態における軸方向応力分布を示す .これらの 結果よりB1.0H3.50βモデルは標準モデルに比べ σzが 17.3kgf/mm²大きくなっていることが分か った .これは水冷部の溝の深さを大きくしたこと によるCuシース部の剛性の低下が主たる要因で あると考えることができる。また、B2.0H1.75β モデルではB2.0H1.75 モデルに比べ、応力が 20.7kgf/mm²減少したが ,これは最高到達温度の 低下による熱ひずみ量の減少が原因だと考えら れ , 電極設計の指針を与えるものである .

3.2.3 電極高さの影響

定常状態におけるB1.0H0.50 モデルの温度分 布と半径・軸方向の応力分布をFig.7 に示す.こ の図とFig.4 を比較すると,B1.0H0.50 モデルの 最高到達温度は 2899 と低く,それにより,横 割れの原因と考えられる軸方向引張り応力が 31.1kgf/mm²減少している.B1.0H0.50 モデルに おいて軸方向引張り応力が最も減少するのは,熱 伝導の大きい電極の高さが小さいことにより熱 の拡散が起こるからであると考えられる.また各 モデルの定常状態における最大応力について整 理した図がFig.8 である.この図から電極高さが 小さいB1.0H0.50 モデルの場合に標準モデルに 比べ軸方向応力が 30%程度低減できることが確 認できる.

4. 結言

本研究では電極形状や寸法及び冷却部形状等 がプラズマ切断時の HfC 電極割れに及ぼす影響 についてFEM熱弾塑性解析を用いて検討を行っ た、これらより以下の結果が得られた、

- 1)電極高さが小さいほど軸方向最大引張り応力 を減少させることができ、電極の横割れ防止 に適した方法であると考えられる。
- 2)水冷部を深くしたことによる軸方向最大引張 り応力の低下は,電極幅の大きな場合に顕著 であることが分かった.

5. 参考文献

 1)上田幸雄,中長啓治,金裕哲,村川英一:溶 接残留応力の解析と測定の材料力学,溶接学 会誌第55巻,第6号,(1986) pp.336-348